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Abstract 

In this paper, a comparison analysis of three different algorithms for the estimation of sine signal parameters in 
two-channel common frequency situations is presented. The relevance of this situation is clearly understood in
multiple applications where the algorithms have been applied. They include impedance measurements, eddy 
currents testing, laser anemometry and radio receiver testing for example. The three algorithms belong to
different categories because they are based on different approaches. The ellipse fit algorithm is a parametric fit
based on the XY plot of the samples of both signals. The seven parameter sine fit algorithm is a least-squares 
algorithm based on the time domain fitting of a single tone sinewave model to the acquired samples. The
spectral sinc fit performs a fitting in the frequency domain of the exact model of an acquired sinewave on the 
acquired spectrum. Multiple simulation situations and real measurements are included in the comparison to
demonstrate the weaknesses and strong points of each algorithm. 

Keywords: sinewave parameter estimation, amplitude and phase measurements, seven parameter sine fit, ellipse 
fit, spectral sinc fit. 
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1. Introduction 
 

Scientific and technological evolution depends on the ability to measure physical quantities 
with ever increasing accuracy. Researchers in the instrumentation and measurement field have 
produced both hardware and software innovations that enable very accurate measurements. 
Special attention has been given to signal processing algorithms such as the ones used to 
estimate the parameters of acquired sinewaves. The need for algorithms that allow the 
characterization of analog to digital converters led the IEEE to include in the 1057 standard 
[1] two algorithms that estimate sinewave parameters: the three-parameter sine fit and the 
four-parameter sine fit algorithms. The former is used to estimate the sinewave parameters 
when its frequency is known, while the last one is used when either the signal frequency or 
the sampling frequency are not accurately known. 

For many applications, such as impedance measurements [2], eddy currents testing [3], 
laser anemometry [4], radio receiver testing [5] and measurements of active and reactive 
power under sinusoidal conditions [6, 7], there is a need to estimate the parameters of two 
common frequency sinewaves usually acquired simultaneously. To this end, an extension of 
the algorithms standardized in [1] was developed and is known as the seven-parameter sine fit 
algorithm [8], which uses the data from both channels and takes advantage of the fact that the 
frequency is the same for both sinewaves. This algorithm has since been adapted for efficient 
implementation in DSP systems [9]. A different approach, based on the X−Y plot of the two 
common frequency sinewaves has produced the ellipse fit algorithm [10], which has also been 
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modified to be implemented in DSP applications [11]. Recently, a new algorithm called 
spectral sinc fit [12] has been developed to estimate the two sinewave parameters. It relies on 
the fitting of the exact theoretical spectrum of a windowed sinewave to the spectral content of 
the acquired sinewaves. 

In this paper, the performance of the ellipse fit, seven-parameter sine fit and spectral sinc 
fit algorithms is analyzed and compared. Using extensive numerical simulations the accuracy 
and precision of the amplitude ratio and phase difference of the two sinewaves is studied as a 
function of signal to noise ratio, sine amplitudes and sine phase difference. For the sinc fit and 
sine fit algorithms, an analysis of the estimated frequency accuracy and precision is also 
performed. This analysis is not possible in the ellipse fit algorithm since the frequency is not 
estimated. The results are also compared to the Crámer-Rao lower bound of two common 
frequency sinewave parameter estimators, developed in [13]. The analysis and comparison of 
the three algorithms is complemented with measurement results of two acquired sinewaves 
with added noise. The multiple acquisitions are then processed by each algorithm to assess 
their accuracy in a practical situation. 

The paper is divided into five sections including the Introduction and the Conclusions. In 
Section 2, a detailed overview of the three algorithms under analysis is given. Section 3 
presents the results of the numerical simulations performed for each algorithm. A comparison 
between the three algorithms and the Crámer-Rao lower bound is also presented here. Finally, 
the measurement results are presented and analyzed in Section 4. 

 
2. The algorithms 

 
This section describes the three algorithms compared in this paper: ellipse fit; seven- 

parameter sine fit; and spectral sinc fit. The goal of these algorithms is to estimate the 
amplitudes Di and phases φi of two acquired sinewaves modeled by: 

 

                           ( ) ( ) ( ) ( )cos 2 cos sin ,i i i i i i iu t D ft C A ft B ft C= π + φ + = 2π + 2π +                   (1) 
 
where i is the channel number (i =1, 2), Ai is the in-phase and Bi  the quadrature component of 
each sinewave. Some algorithms also estimate the DC components Ci and the common 
frequency f. 

In most two-channel applications the value of the amplitude and phase of each signal is not 
required. The only values needed are the amplitude ratio D2/D1 and phase difference 

2 1∆ϕ = φ − φ . However, some algorithms require that the frequency f must also be estimated 
since it is not accurately known. This is due to the uncertainty of the generated sinewaves 
frequency f and uncertainty of the sampling frequency fs. 

The Cramér-Rao lower bounds (CRLB) for parameter estimation of dual-channel common 
frequency sinewaves was determined in [13] for an unbiased estimator under a Gaussian 
assumption using the signal to noise ratio defined as: 
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where 2
iσ  is the variance of the zero-mean Gaussian white noise of signal i. 

For the relative amplitude ratio, the standard deviation that corresponds to the CRLB is: 
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while the standard deviation that corresponds to the bound of the phase difference is: 
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                                            (4) 

 
and the normalized standard deviation that corresponds to the bound of the estimated 
frequency is: 
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In this section, the sinewave parameter extraction is illustrated for each of the three 
algorithms using two simulated sinewaves sampled at 96 kS sSf =  with N = 200 samples. 
The waves parameters are D1 = 1 V, D2 = 0.25 V, 1 kHzf =  and 25∆ϕ = . A signal to noise 
ratio SNR = 30 dB was considered in both sinewaves. 
 
2.1. Ellipse Fit 
 

The ellipse fit algorithm was first developed in [14] and improved for numerical stability in 
[10]. It was then proposed as a non-iterative procedure to estimate the amplitudes and phase 
difference of two common frequency sinewaves [15]. 

The time dependence of the sinewaves can be discarded by parametrically plotting the two 
sinewaves in a XY plot, creating a Lissajous curve. Since the two sinewaves have the same 
frequency, the figure will be an ellipse, except when the two waveforms are in phase or 
opposition which makes the ellipse degenerate into a straight line. 

Algebraically, the time dependence in (1) can be eliminated by rewriting them as: 
 

                                         ( ) ( )
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                     (6) 

 
which is the ellipse equation. This corresponds to the general conic [9]: 
 

                                            ( ) 2 2
1 2 1 1 2 2 1 2, 0F u u au bu u cu du eu g= + + + + + =                          (7) 

 

with the constraint 2 4 0b ac∆ = − <  so that the conic is an ellipse which corresponds to 
n∆ϕ ≠ π  with n ∈ . This constraint can be, by scaling of the conic (7), transformed into 

2 4 1b ac− = − .  
The conic model (7) is fitted to the sinewave data by a non-iterative constrained 

minimization process based on Lagrange multipliers [10], which yields the model parameters 
[ ], , , , ,a b c d e g . The sine amplitudes are given by: 
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where k is the scaling factor to ensure 2 4 1b ac− = − . The phase difference ∆ϕ  can be 
determined by: 

                                                        ( ) ( )sign
cos ,
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while its sign is obtained by observing the rotation direction of the ellipse. To avoid errors 
due to the presence of noise, a voting system was implemented to determine the rotation 
direction as described in [11]. 

The amplitude ratio D2/D1 is: 

                                                                      2

1

D a
D c

=                                                           (10) 

and is independent of the scaling factor k. 
Fig. 1 illustrates the ellipse fit procedure with the two sampled sinewaves plotted in an XY 

plot. The dots represent the noisy sinewave data points and the line shows the ellipse fitted by 
the procedure described above. 
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Fig. 1. Ellipse fit of two sinewaves with D1 = 1 V, D2 = 0.25 V, f = 1 kHz, 25∆ϕ =  and N = 200. The dots 
represent the sampled data and the line represents the fitted ellipse. 

 
The original ellipse fit implementation [10] was modified in [15] to require only the 

construction of 3 3×  matrices with a total of only 18 different elements (floats) independently 
of the number of samples. This is a major advantage in terms of memory requirements of the 
algorithm. 
 
2.2. Seven-parameter sine fit 

 
Sine fitting algorithms were standardized in [1] for ADC characterization. In the three- 

parameter version, the amplitude, phase and DC component of an acquired sinewave, of 
known frequency, are estimated in a non-iterative least-squares procedure. Since in most 
cases the frequency is not accurately known, the four-parameter sine fit version estimates the 
sinewave amplitude, DC component and phase along with its frequency. In this case the 
algorithm becomes non-linear and an iterative non-linear least-squares procedure is needed. 
The three- and four-parameter sine fit algorithms are suitable for single-channel data and can 
be independently applied to multi-channel data. 

The seven-parameter sine fit algorithm was developed as an extension of the four- 
parameter algorithm for dual channel applications where the two signals have the same 
frequency [8]. In each iteration m the algorithm estimates the sinewave parameters 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2 2 2

m m m m m m m mA B C f A B C = ∆ x , where ( )mf∆  is the frequency correction for the 
current iteration. These estimates are obtained from: 
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where ,3N0  is a N×3 zero matrix and  
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with ( )1
, ,

m
i n i nt−β = ω  and ( ) ( ) ( ) ( )1 1

, , , , ,2 sin 2 cosm m
i n i n i n i n i nA t B t− −α = − π β + π β  where ,i nt  are the 

timestamps of signal i. 
The initial estimates are obtained from the interpolated Discrete Fourier Transform 

(IpDFT) which yields a good frequency estimation [16]. The three-parameter algorithm is 
then used in each signal to estimate the remaining 6 initial parameters. The iterative procedure 
terminates when a predefined maximum number of iterations is reached (nonconvergence) or 
the relative frequency correction f f∆  is below a certain threshold (convergence). 

In Fig. 2, the sampled sinewaves are shown with dots (for u1) and crosses (for u2) while the 
sinewaves reconstructed with the parameters estimated by the sine fit algorithm are shown by 
continuous lines. 
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Fig. 2. Seven-parameter sine fit of two sinewaves with D1 = 1 V, D2 = 0.25 V, f = 1 kHz, 25∆ϕ =  and N = 200. 

The dots represent the u1 sampled data, the crosses represent the u2 sampled data and the lines represent the 
reconstructed sinewaves. 

 
This algorithm involves the creation of a matrix of 2N×7 floating-point numbers. As the 

number of samples increases, the memory requirements will limit the algorithm applicability 
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in a DSP implementation. In [9], a more efficient version is presented that requires only 
3N+63 floating-point memory positions. 

 
2.3. Spectral sinc fit 
 

The spectral sinc fit algorithm has been recently proposed as a new method to estimate the 
parameters of an acquired sinewave [12]. The method is based on fitting the theoretical 
frequency spectrum on the spectrum of the measured signals. The spectral sinc fit method has 
been extended to be applied to two-channel common frequency acquisitions. 

The acquisition of a limited number of samples is equivalent to applying a rectangular 
window to the sinewaves. The theoretical spectrum of such a sinewave is [12]: 
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where k ∈ [–N/2+1; N/2] and W(ω) is the spectrum of a rectangular window; i.e., an aliased 
sinc function: 
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The resulting two-sided spectrum [ ]ˆ
iX k  consists of two overlapping aliased sinc functions 

centered at 2X sf f±ω = ± π . The maximums of [ ]ˆ
iX k  are not centered at the frequencies 

X±ω  due to the leakage of one sinc into the other. Note that in the model (14), the DC 
component Ci is not included since in most applications it is not important (it does not carry 
information about the measured quantity). 

The algorithm searches for the sinewaves parameters that minimize the cost functions: 
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where [ ]iX k  is the spectrum of each acquired signal. 
From (16) it can be seen that the cost functions are evaluated in only three points of the 

spectrum, the point where the measured amplitude spectrum [ ]iX k  has its maximum (kmax) 
and the two neighboring points. 

The algorithm exploits the fact that the relation between the theoretical spectrum [ ]ˆ
iX k  

and the amplitude iD  is linear (see (14)) to reduce the number of estimated parameters to 
three: two phases and the common frequency. The amplitude iD  is then calculated using the 
estimated parameters: 
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The search for the minimums is an iterative procedure that uses the Gauss-Newton method. 
The initial frequency estimate is obtained by the IpDFT [16] and the remaining initial 
parameters are obtained by applying the three-parameter sine fit to each measured signal. 

In order to compensate for the possible different signal to noise ratios in each of the two 
measured signals (due to e.g., noise, spurious components, harmonic distortions), in each 
iteration weights are assigned to each signal and used in the Gauss-Newton method: 
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where wi are the weights, I6 is a 6×6 identity matrix, 06,6 is a 6×6 zero matrix, [ ]†J  is the 
pseudo-inverse of the Jacobian matrix J, the superscript (m) denotes the iteration number and 
ri are the fitting residuals: 
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The weights wi are the LS errors, calculated in the time domain as the difference between 

the measured signal and the signal reconstructed using the current estimates of the parameters. 
The search ends when the relative change of the frequency estimate drops below a 

threshold or when the preset maximum number of iterations is exceeded. The weights wi are 
used to estimate the Cramér-Rao lower bound (CRLB) of frequency estimation [13] which is 
then used to adjust the threshold level. This adaptive setting of the threshold level has an 
advantage over using a fixed setting because it prevents the threshold level to be set 
unrealistically low (below the CRLB) or too high. 

The main advantage of this algorithm is that the iterative part can be accurately computed 
using as little as three sample points per signal (the three values of k in (16)) making it 
memory wise very efficient since only the initial FFTs are done with the full number of 
acquired samples. 

Fig. 3 shows an example of amplitude spectrums of two sampled sinewaves and the 
spectrums that were fitted on them. 
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Fig. 3. Spectral sinc fit: positive frequencies of the two-sided amplitude spectrums of two sinewaves                       

(D1 = 1 V, D2 = 0.25 V, f = 1 kHz, 25∆ϕ =  and N = 200) and the fitted spectrum. 
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3. Numerical simulations 
 

To assess the performance of the three algorithms, they were implemented in Matlab and 
several tests were executed. Since the ultimate goal is to estimate the amplitude ratio (D2/D1) 
and the phase difference (∆ϕ), the tests estimated the amplitude ratio error (i.e., the difference 
between the estimated amplitude ratio and the imposed ratio) as well as the phase difference 
error. For each set of tested parameters, 100 000 different runs were executed to obtain the 
average values and the corresponding standard deviations. In each run, the initial phase of the 
first signal (φ1) is a random variable with a uniform pdf between -180º and 180º. Signal 
frequency is 1 kHz and 1920 samples per channel are taken at 96 kS/s. White Gaussian noise 
is added according to each signal’s signal-to-noise-ratio (SNR). 
 
3.1. Signal to noise ratio analysis 
 

In this analysis, the signal amplitudes are fixed at D1=1 V and D2=0.25 V. Since it is 
known that the ellipse fit algorithm cannot work near ∆ϕ=180° and ∆ϕ=0° because of ellipse 
degeneration, the phase difference is a uniform pdf in the [10º ;170º ]±  range. This issue will 
be analyzed and discussed in Section 3.3. 

The results for the ellipse fit are shown in Fig. 4 and Fig. 5. It can be seen that the 
algorithm is biased for signal to noise ratios typically below 40 dB. As expected, the standard 
deviations are reduced with the increase in SNR. 
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Fig. 4. Average amplitude ratio error (A) and corresponding standard deviation (B) for the ellipse fit 
algorithm as a function of the two signal to noise ratios for D1=1 V and D2=0.25 V. 
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Fig. 5. Average phase difference error (A) and corresponding standard deviation (B) for the ellipse fit 
algorithm as a function of the two signal to noise ratios for D1=1 V and D2=0.25 V. 
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Note that the fluctuations in the results of the average phase errors (Fig. 5A) for the lowest 
signal to noise ratios are caused by the finite number of repetitions and that the corresponding 
standard deviations are considerably higher than the represented fluctuation (e.g., for 
SNR=30 dB the average error is -0.005° and the standard deviation is 0.4°). 

The results for the seven parameter sine fit are shown in Fig. 6 while the results for the 
spectral sinc fit are presented in Fig. 7. These algorithms are not biased and so the shown 
results correspond only to the standard deviations. Note that the evolutions of the standard 
deviations are quite similar for these algorithms. Comparing with the ellipse fit algorithm, the 
evolution pattern is the same, but the standard deviations are higher for the ellipse fit. 

In Fig. 8, the relative standard deviation of the estimated frequency error is shown for the 
seven-parameter sine fit and for the spectral sinc fit (i.e., for the algorithms that also estimate 
the signal frequency). It can be seen that the results of both algorithms are in the same order 
of magnitude but with considerable shape differences. This is caused by the fact that the sinc 
fit uses the information from the signal to noise ratios it estimates in order to weigh the 
information from the two signals giving more relevance to the signal with the highest SNR. 
This means that if one signal has a high SNR it will assure a very good frequency estimate 
without being influenced by the samples of the signal with the lower SNR. On the other hand, 
in the seven-parameter sine fit the residuals of both signals are not weighted and contribute 
equally to the estimates. In this case, if one signal has a high SNR and the other has a low 
SNR (and both have similar order of magnitude amplitudes as is the case in Fig. 8), the seven-
parameter sine fit will assign equal weights to the signals and the signal with the lowest SNR 
will infect the frequency estimation causing a higher standard deviation. 
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Fig. 6. Standard deviation of the amplitude ratio (A) and phase difference error (B) for the seven parameter 
sine fit algorithm as a function of the two signal to noise ratios for D1=1 V and D2=0.25 V. 
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Fig. 7. Standard deviation of the amplitude ratio (A) and phase difference error (B) for the spectral sinc fit 
algorithm as a function of the two signal to noise ratios for D1=1 V and D2=0.25 V. 
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Fig. 8. Relative standard deviation of the estimated frequency error for the seven parameter sine fit algorithm 
(A) and for the spectral sinc fit algorithm (B) as a function of the two signal to noise ratios for D1=1 V and 

D2=0.25 V. 
 

3.2. Amplitude analysis 
 

In this section, the amplitude analysis of the three algorithms is presented. The signal to 
noise ratios are set to SNR1 = 40 dB, SNR2 = 80 dB and the amplitudes are swept from 0.1 V 
up to 2 V with 0.1 V resolution. In Fig. 9 the results corresponding to the amplitude ratio error 
standard deviation are presented for the three algorithms. Clearly, the results do not depend on 
the amplitudes but rather on the SNR of the signals. Comparing the three algorithms it can be 
seen that the spectral sinc fit results are identical to the seven-parameter algorithm results 
while the results obtained with the ellipse fit are a little higher. 
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Fig. 9. Relative standard deviation of the amplitude ratio for the ellipse fit (A), seven parameter sine fit (B)                               
and spectral sinc it (C) as a function of the two signal amplitudes for SNR1=40 dB and SNR2=80 dB. 

 



 
Metrol. Meas. Syst., Vol. XVII (2010), No. 2, pp. 00−00 

In Fig. 10, the corresponding results for the phase error standard deviation are presented. 
Once again, the results of the spectral sinc fit and the seven-parameter sine fit are identical 
and the results of the ellipse fit algorithm are slightly worse. In the three cases, the results do 
not depend on the signal amplitude but rather on the signal SNRs. 
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Fig. 10. Standard deviation of the estimated phase error for the ellipse fit (A), seven parameter sine fit (B) 
and spectral sinc fit (C) as a function of the two signal amplitudes for SNR1=40 dB and SNR2=80 dB. 

 
3.3. Phase analysis 
 

Regarding the phase analysis, the tests that were performed used D1=1 V, D2=0.5 V and 
three different values of the common SNR. The imposed phase difference was swept from 
-180º up to 180º with 0.005º resolution. As expected, the seven-parameter sine fit and the 
spectral sinc fit algorithms are independent on the phase difference (results presented in 
Table 1). 

The ellipse fit algorithm is quite different. Due to ellipse degeneration, the algorithm has 
problems for phase differences near 0º and 180º (as shown in Fig. 11 and with more detail in 
Fig. 12 - note that the peak value differences between Fig. 11A and 12A are caused by the 
lower phase resolution in Fig. 11A). The range of affected phase difference values depends on 
the SNR values. Remarkably, in spite of the ellipse degeneration, the algorithm is capable of 
estimating the amplitude ratio without bias and with the same standard deviation for all phase 
difference values. 

The results presented in Table 1 correspond to the values obtained with the three different 
algorithms for different values of signal to noise ratios and for the phase difference of 90º (to 
avoid problems with the ellipse fit algorithm), D1=1 V and D2=0.5 V. For comparison, the 
Cramér-Rao lower bounds, determined using the equations (2)-(4) derived in [13], are also 
included in Table 1. 
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Fig. 11. Average phase difference error (A) and standard deviation (B) for the ellipse fit algorithm as a function 
of the phase difference and common SNR for D1=1 V and D2=0.5 V. 
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Fig. 12. Detailed view of Fig. 11 near ∆ϕ=0º. 
 

Table 1. Comparison of the algorithms for ∆ϕ=90º. 

  SNR1=SNR2 

  30 dB 45 dB 60 dB 

D2/D1 relative standard 
deviation 1.5×10-3 2.6×10-4 4.6×10-5 

Ellipse fit 
Phase difference 

standard deviation [°] 8.3×10-2 1.5×10-2 2.6×10-3 

D2/D1 relative standard 
deviation 1.0×10-3 1.8×10-4 3.2×10-5 Seven 

parameter sine 
fit Phase difference 

standard deviation [°] 5.8×10-2 1.0×10-2 1.8×10-3 

D2/D1 relative standard 
deviation 1.0×10-3 1.8×10-4 3.2×10-5 

Spectral sinc fit 
Phase difference 

standard deviation [°] 5.9×10-2 1.0×10-2 1.8×10-3 

D2/D1 relative standard 
deviation 1.0×10-3 1.8×10-4 3.2×10-5 

Cramér-Rao 
bound 

Phase difference 
standard deviation [°] 5.8×10-2 1.0×10-2 1.8×10-3 
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Note that the results from the seven-parameter sine fit are identical to the ones obtained 
with the spectral sinc fit and also identical to the Cramér-Rao lower bound. The results of the 
ellipse fit are slightly worse. 

 
4. Measurement results 
 

In this section, the measurement results are presented. A Tektronix AFG 3022 function 
generator was used to generate signals with a frequency f = 1 kHz, amplitudes D1 = 8 V and 
D2 = 2 V and phase shift 25∆ϕ = ° . Two Agilent 33210A generators were used to add random 
Gaussian noise to these signals. The resulting signals were acquired using the NI USB-9215A 
data acquisition board (simultaneous sampling, 16 bit, input range ±10V), whose sampling 
rate was set to 96 kS/s. The acquired signals were then processed using the three estimation 
algorithms. 

In the following test, signals with different settings of SNR were used. The acquired 
signals were divided into 1 000 frames whose length was set to 288 samples (3 periods) and 
1920 samples (20 periods). The ellipse fit, the seven-parameter sine fit and the spectral sinc fit 
were then used to estimate the signals’ parameters in each frame. From these results, the 
standard deviations of estimation of the signal’s parameters were calculated. The relative 
standard deviation of the amplitude ratio (D2/D1) estimation error and the standard deviation 
of the phase difference ∆ϕ  estimation error are shown in Table 2 while the standard deviation 
of the frequency estimation error is shown in Table 3. 
 

Table 2. Measurement results – comparison of the algorithms. 

  Ellipse fit Seven parameter sine fit Spectral sinc fit 

  
D2/D1 relative 

standard 
deviation 

Phase 
difference 
standard 

deviation [°] 

D2/D1 relative 
standard 
deviation 

Phase 
difference 
standard 

deviation [°] 

D2/D1 relative 
standard 
deviation 

Phase 
difference 
standard 

deviation [°] 

SNR1 = 68 dB
SNR2 = 49 dB 5.6×10-4 1.8×10-3 3.4×10-5 2.8×10-5 3.4×10-5 2.8×10-5 

SNR1 = 53 dB
SNR2 = 41 dB 3.6×10-3 4.3×10-2 5.3×10-4 5.2×10-4 5.3×10-4 5.2×10-4 

SNR1 = 42 dB
SNR2 = 30 dB 1.3×10-2 1.6×10-1 2.0×10-3 2.0×10-3 2.0×10-3 2.0×10-3 

N = 288 

SNR1 = 64 dB
SNR2 = 30 dB 1.2×10-2 1.5×10-1 1.8×10-3 1.9×10-3 1.8×10-3 1.9×10-3 

SNR1 = 68 dB
SNR2 = 49 dB 4.0×10-4 5.4×10-4 1.4×10-5 6.3×10-6 1.4×10-5 6.3×10-6 

SNR1 = 53 dB
SNR2 = 41 dB 1.5×10-3 1.6×10-2 2.0×10-4 2.0×10-4 2.0×10-4 2.0×10-4 

SNR1 = 42 dB
SNR2 = 30 dB 5.2×10-3 6.2×10-2 8.0×10-4 7.7×10-4 8.0×10-4 7.7×10-4 

N = 1920 

SNR1 = 64 dB
SNR2 = 30 dB 4.8×10-3 6.0×10-2 7.1×10-4 7.8×10-4 7.1×10-4 7.8×10-4 

 
In the following measurement, signals with SNR1 = 58 dB and SNR2 = 45 dB were 

acquired. The acquired data were divided into 1 000 frames whose length was set from 192 
samples (2 periods of the signal) up to 1920 samples (20 periods) in order to investigate the 
influence of the frame length N on the estimation results. The relative standard deviation of 
the amplitude ratio (D2/D1) estimation error and the standard deviation of the phase difference 
∆ϕ  estimation error are shown in Fig. 13 and the standard deviation of the frequency 
estimation error is shown in Fig. 14. 
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Table 3. Measurement results – frequency estimation. 

  

Seven parameter sine fit 
 

Std. deviation of frequency 
estimation error [Hz] 

Spectral sinc fit 
 

Std. deviation of frequency 
estimation error [Hz] 

SNR1 = 68 dB 
SNR2 = 49 dB 1.5×10-3 1.2×10-3 

SNR1 = 53 dB 
SNR2 = 41 dB 2.4×10-2 2.9×10-2 

SNR1 = 42 dB 
SNR2 = 30 dB 8.4×10-2 1.1×10-1 

N = 288 

SNR1 = 64 dB 
SNR2 = 30 dB 2.1×10-2 2.8×10-3 

SNR1 = 68 dB 
SNR2 = 49 dB 1.0×10-4 1.5×10-4 

SNR1 = 53 dB 
SNR2 = 41 dB 1.4×10-3 1.7×10-3 

SNR1 = 42 dB 
SNR2 = 30 dB 4.9×10-3 6.2×10-3 

N = 1920 

SNR1 = 64 dB 
SNR2 = 30 dB 1.2×10-3 2.1×10-4 
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Fig. 13. Measurement results – relative standard deviation of the amplitude ratio (A) and standard deviation 
of the phase difference error (B) as a function of signal length N. 
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Fig. 14. Measurement results – standard deviation of the frequency estimate error as a function of signal 
 length N. 

 
 

 
The measurement results confirm the simulation results. In the considered situations, the 

results provided by the seven-parameter sine fit and the sinc fit are almost identical (the 
respective plots are on top of each other in Fig. 13). In cases where the difference between the 
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two signals' SNRs is significantly different (e.g., the case of SNR1 = 64 dB and SNR2 = 30 dB 
shown in Table 2 and Table 3) the sinc fit algorithm, thanks to its use of weights, provides 
significantly better estimates of the frequency than the seven-parameter sine fit (see Table 3). 
The estimates of the rest of the parameters remain comparable, which is in accordance with 
the behavior shown in Fig. 6, Fig. 7 and Fig. 8. 

The results of the ellipse fit were worse than the results of the other two algorithms, mainly 
in the case of the phase difference estimate. 

 
5. Conclusions 
 

In this paper the performance of three algorithms for two-channel sinewave parameter 
estimation was analyzed in a broad range of situations. The two sinewaves have a common 
frequency since this is the case in many applications. The three compared algorithms were 
ellipse fit, seven-parameter sine fit and spectral sinc fit. 

After the general description of the three algorithms, presented with some detail regarding 
their implementation, numerical simulations were used to assess and compare the algorithms 
performance. The parameters used to evaluate this performance were the relative standard 
deviation of the amplitude ratio error and the standard deviation of the phase difference error. 
Since the ellipse fit algorithm does not estimate the frequency, the standard deviation of the 
frequency error was only analyzed for the sine fit and sinc fit algorithms. 

The first analysis considered the effect of the signal to noise ratio on the parameters 
estimated by each algorithm. In this case, for the ellipse fit algorithm, the average of the 
amplitude ratio error was also presented, confirming the fact that this algorithm is biased for 
low values of the SNR, while no bias effect was found in the phase difference estimation. The 
standard deviation of both amplitude ratio error and phase difference error decrease with 
increasing SNR as expected. The standard deviation results for the sine fit and sinc fit 
algorithms resemble the ellipse fit results but with lower values, indicating that both 
algorithms perform better than the ellipse fit. Although the sine fit and sinc fit yielded almost 
identical results for the amplitude ratio and phase difference analysis, the frequency error 
analysis shows that the sinc fit performs better when there is a difference in the SNR values of 
the two signals. This is due to the use of weights in the sinc fit algorithm which gives more 
relevance to the data in the channel with higher SNR. 

The effect of the amplitude of each signal was analyzed next with a fixed, but different, 
SNR for each signal. It was found that the amplitude ratio error and phase difference error 
standard deviations are independent of the signal amplitudes. Also, as in the SNR analysis, 
the sinc fit and sine fit algorithms perform almost identically while the ellipse fit results are 
slightly worse. 

In the phase analysis, emphasis was given on the ellipse fit algorithm due to the known 
limitations of this algorithm for in-phase and opposition sinewaves which make the ellipse 
degenerate into line segments. Although the algorithm has difficulties in these situations, it 
still manages to correctly estimate the amplitude ratio. The sine fit and sinc fit algorithms 
perform equally well and are very near the Cramér-Rao lower bound. 

The evaluation of the three algorithms was complemented with measurement results. The 
acquisitions were performed with different record lengths to show the influence of the number 
of acquired samples on the performance of each algorithm. The algorithms perform better as 
the SNR increases and also as the number of samples increases. The sine fit and sinc fit 
algorithms performed identically while the ellipse fit results confirm that it performs slightly 
worse especially in the phase difference estimation. 

To conclude, the sine fit and sinc fit algorithms perform equally well and are near the 
Cramér-Rao lower bound. The sinc fit is slightly better in the frequency estimation, for 
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different SNRs of the signals. The ellipse fit, despite being fast and non-iterative, performs 
worse that the other two algorithms, especially where the phase difference is concerned. 
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